The Role of Transitional Levels to Explain the $^{237}{\rm Np}$ $(\gamma,{\rm F})$ Cross Section Structures Near the Threshold Joel Mesa¹, João Arruda-Neto¹, Oscar Rodriguez², Cesar E. Garcia², Vladimir Likhachev¹, Luiz P. Geraldo³, Renato Semmler⁴, Fernando Guzmán², Fermin Garcia⁵, Tulio E. Rodrigues¹, Airton Deppman¹ - ¹ Instituto de Física, Universidade de São Paulo, Brazil - ² Instituto Superior de Ciencias y Tecnologia Nucleares, Havana, Cuba. - ³ Universidade Católica de Santos/UNISANTOS, Santos, SP, Brazil. - ⁴ Instituto de Pesquisas Energeticas e Nucleares / IPEN, São Paulo, Brazil. - ⁵ Universidade Estadual de Santa Cruz, Bahia, Brazil. The transition levels at the top of the two 237 Np fission barriers were, for the first time, obtained by means of the so-called semi-microscopic combined method using Lipkin-Nogami projectors in the BCS approach which we have recently developed and implemented[1]. In order to overcome the difficulties in dealing with large nuclear deformations, we used the BAR-RIER code[2], which calculates single particle spectra in a deformed Woods-Saxon potential. The results enabled us to describe the experimentally observed near-barrier photofission cross section structures for 237 Np[3]. In particular, the long standing issue on the physical nature of a 237 Np(γ ,f) structure around 5.7 – 5.8 MeV, systematically measured in the last three decades, was nicely elucidated in terms of a bunch of transition states at the top of the highest and inner barrier (height $\cong 5.7$ MeV). Also, an experimentally observed sub-barrier shelf was identified as belonging to a bunch of levels at the top of the lowest and outer barrier (height $\cong 5.2$ MeV). ## References - [1] O.Rodriguez, F.Garcia, H.Dias, J.Mesa, J.D.T.Arruda-Neto, E.Garrote and F.Guzman. Comp.Phys.Commun. 137, 405 (2001). - [2] F. Garcia, O. Rodriguez, J. Mesa, J.D.T. Arruda-Neto, V.P.Likhachev, E. Garrote, R. Capote and F. Guzman. Comp. Phys. Commun. 120,57 (1999). - [3] L.P. Geraldo, R. Semmler, O.L. Gonalez, J. Mesa, J.D.T. Arruda-Neto, F.Garcia and O Rodriguez, Nucl.Sc.Engineering 136, 357 (2000). Email: joel@if.usp.br